A fuzzy institution for neural conceptors
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Neural networks have been successfully used for learning tasks [8], but they
exhibit the problem that the way they compute their output generally cannot
be interpreted or explained at a higher conceptual level [9]. The field of neuro-
symbolic integration [1] addresses this problem by combining neural networks
with logical methods. However, most approaches in the field (like e.g. logic tensor
networks [3]) are localist, that is, predicates or other symbolic items are repre-
sented in small sub-networks. This contrasts with the distributed representation
of knowledge in (deep learning) neural networks, which seems to be much more
flexible and powerful.

Jaeger’s conceptors [6, 7] provide such a distributed representation while si-
multaneously providing logical operators and concept hierarchies that foster ex-
plainability. The basic idea is to to take a recurrent neural network and not
use it for learning through back-propagation, but rather feed it with input sig-
nals, leading to a state space that can be captured as a certain ellipsoid using
a conceptor matrix. Conceptor matrices are positive semidefinite matrices with
singular values (which represent the lengths of the ellipsoid axes) ranging in [0,1].

In [7], Jaeger introduces and studies an algebra of conceptors, providing the
logical operations “and”, “or” and “not” (which however satisfy only part of
the laws of Boolean algebra and do not even form a lattice) as well as a scaling
operation called aperture adaption, and an interpolation operation. A crucial
advantage of conceptors over ordinary neural networks is that using the algebra
of conceptors, training examples can easily be added to conceptors, without the
need of re-training with the whole sample. Moreover, the Lowner ordering on
conceptor matrices expresses a concept hierarchy. For reasoning about concep-
tors, two logics are introduced, an extrinsic and an intrinsic one. Both logics are
based on the conceptor algebra operations. The extrinsic logic provides a first-
order logic with atomic formulas based on the Lowner ordering. This leads to
two levels of Boolean operations: one within conceptor terms, and one within the
first-order logic. The intrinsic operation avoids this duplication by only working
on conceptor terms and comparing them with a fixed conceptor. In [7], Jaeger
formalises both logics as institutions [4], which are an abstract formalisation of
the notion of logical system. Moreover, he states the open problem of developing
a proof calculus and theorem proving support for these logics.

We here argue that both of these logics are not completely adequate for
reasoning about conceptors, because they both can ultimately speak only about
the Lowner ordering, i.e. crisp statements that can be either true or false. We



propose that a more promising approach is to view conceptors as a kind of fuzzy
sets. Indeed, their Boolean operators satisfy the (appropriate generalisation of)
T-norm and T-conorm laws, and form a (generalised) De Morgan Triplet [10,
5]. This is remarkable, because conceptors have not been introduced as a neuro-
fuzzy approach (and note that neuro-fuzzy approaches generally are localist in
the above sense, while conceptors provide a global distributed representation of
knowledge).

We argue that an appropriate conceptor logic should not have crisp but fuzzy
statements as its atomic constituents:

— classification of an N-dimensional signal vector z by a N x N conceptor
matrix C, yielding the fuzzy truth value 27 Cz/N (which can be seen as
fuzzy set membership),

— a “fuzzy subset” relation Cy < Cy between conceptors.

Atomic formulas use conceptor terms formed with the same operations as in
Jaeger’s logics. On this basis, we develop a many-valued institution in the sense
of [2] for conceptors. A (fuzzy) first-order logic on top of that can be obtained
using general methods of defining fuzzy connectives and quantifiers.
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