
Institutions for database schemas and datasets

Martin Glauer1 and Till Mossakowski2

1Otto von Guericke University, Magdeburg, Germany, glauer@iks.cs.ovgu.de
2Otto von Guericke University, Magdeburg, Germany, till@iks.cs.ovgu.de

1 Introduction

Database techniques have a long tradition in computer science and build the foundation for numer-
ous modern applications. There are many category-theoretical approaches tackling several problems
that occur when working with databases. Modelling database schemas as categories yields the in-
tuitive notion of a schema merge as pushouts of functors [4]. A similar approach towards schema
integrations was definedfor the first time in an institutional setting in [1]. The defined structures are
not close to actual relational database structures. Yet, an institutional approach towards database
structures yields functionalities not only on a structural, but also on the data level. Institutions
were defined in [2] as a framework to cover the vast landscape of logical formalisms. The formal-
ization presented in this paper can be a first step towards institution based logical reasoning on
relational databases.

2 Formalization

We present an institution that, in contrast to [4], closely follows the Data Description Language
(DDL) and the Data Manipulation Language (DML) of modern SQL-based database systems.

An object Σ of the signature category corresponds to a schema formulated in the DDL exclud-
ing constraint definitions. It consists of a sef of tables TΣ, a set of columns CΣ, a set of types SΣ, a
family of sets of functional symbols (FΣ,w,s)w∈(SΣ)∗,s∈SΣ , and a family of sets of predicate symbols

(PΣ,w)w∈(SΣ)∗ . Additionaly, it contains functions that link tables and columns colΣ(·) : TΣ → ℘(CΣ)

and columns to their types τ(·, ·) : {(t, c)|t ∈ TΣ, c ∈ col(t)} → SΣ.
In the following we will use the abbreviation CΣ{T} := {(t, c)|t ∈ TΣ, c ∈ colΣ(t)}.

A signature morphism σ : Σ → Σ′ consists of functions σT : TΣ → TΣ′ , σS : SΣ → SΣ′ . σcol

maps tables t to functions (col(t) → col′(σT(t))) on their respecive column spaces, σF such that
all n-ary function symbols f ∈ FΣ,w1,...,wn,s are mapped to σF (f) ∈ FΣ,σS (w1),...,σS (wn),σS (s) and σP
respectively. Additionally, the types of columns must be preserved along σS .

A sentence ϕ in Sen (Σ) consists of a table t ∈ TΣ and a constraint where the latter can can
be one of the following: A primary key pk ∈ col(t), a foreign key fk ∈ col(t) × C{T}, a check
constraint ck that is an unquantified first-order formula over the variables col(t) or a uniqueness
constraint un ∈ col(t). The translation of these sentences along a signature morphisms is the
intuitive application of the corresponding functions.

An object M of the model category Mod(Σ) of a signature Σ represents the data stored in
each table as well as interpretation of the sorts named in Σ. Each model M consists of non-empty

1



carrier sets Ms for s ∈ SΣ, a function (fw1...wns)M : Mw1× ...×Mwn →Ms for each function symbol
f ∈ Fw1,...,wn,s, a relation (pw1...wn)M ⊆ Mw1 × ... ×Mwn for each predicate symbol f ∈ Pw1,...,wn ,
a function data that maps each table t ∈ TΣ to a (multi-)set of functions (col(t)→Mτ(t,c)).

The reduct M ′|σ of a model M ′ in Mod(Σ′) against a signature morphism σ : Σ→ Σ′ consists
of carrier sets (M ′|σ)s = M ′σS (s). Analogously, function and predicates are obtained by translating
their sorts along σS . The data state of a table depends on the images of its columns:

∀t ∈ TΣ, c ∈ col(t) : dataM |σ(t) = dataM (σT(t)) ◦ (σcol(t)) (1)

For every M ∈ Mod(Σ) and ϕ ∈ Sen(Σ) the satisfaction relation M |=Σ ϕ holds depending
on the structure of ϕ: If ϕ = (t, c) is a uniqueness or a primary key constraint:

∀row , row ′ ∈ dataM (t) :
(
row 6= row ′ ⇒ row(c) 6= row(c′)

)
If ϕ = (t, (c, (t′, c′))) is a foreign key constraint:

∀row ∈ dataM (t),∃row ′ ∈ dataM (t′) : row(c) = row ′(c′)

If ϕ = (t, ck) is a check key constraint it is evaluated as a first order formula:

∀row ∈ dataM (t) : row |=Σ
FOL ck

Whilst the models in the database institution described above represent a possible data state,
morphisms of the category of models are the transitions between these states, i.e. statements of
the DML like INSERT, UPDATE, DELETE. Similar morphism structures have been used in a
categorical approach towards version control systems [3].

Consider a data state M and two different, concurrent manipulations (i.e. morphisms) m1 :
M → M1, m2 : M → M1. If there is a pushout m′1 : M1 → M∗, m′2 : M2 → M∗ it is possible to
merge both changes directly into a single data state M∗.

3 Conclusion

Whilst current approaches focus mainly on the schematic transformations of databases, the pre-
sented institution also covers the behavior on the data level. This allows the definition of formal
foundations for collaborative database systems. These foundations can be used to evaluate existing
collaborative database systems with respect to formal correctness or develop new such systems.

References

[1] Suad Alagić and Philip A Bernstein. A model theory for generic schema management. In
International Workshop on Database Programming Languages, pages 228–246. Springer, 2001.

[2] Joseph A Goguen and Rod M Burstall. Institutions: Abstract model theory for specification
and programming. Journal of the ACM (JACM), 39(1):95–146, 1992.

[3] Samuel Mimram and Cinzia Di Giusto. A categorical theory of patches. Electronic notes in
theoretical computer science, 298:283–307, 2013.

[4] Patrick Schultz, David I Spivak, Christina Vasilakopoulou, and Ryan Wisnesky. Algebraic
databases. arXiv preprint arXiv:1602.03501, 2016.

2


