An Approach to Combining the Institutions for Event-B and Temporal Logic*

Marie Farrell¹, Rosemary Monahan², James F. Power², and Michael Fisher¹

- ¹ Department of Computer Science, University of Liverpool, UK
- ² Department of Computer Science, Maynooth University, Ireland

The Event-B formal specification language has been used at an industrial scale for proving safety properties of a system's specification [1]. Event-B is a state-based language that supports the process of formal refinement, it uses a set-theoretic modelling notation and is based on first-order logic. Our previous work on the development of the institution for Event-B, \mathcal{EVT} , involved decomposing the syntax of the Event-B language into three layers [3]. These are the superstructure layer, the infrastructure layer and a base layer where the latter contains the mathematical language used by Event-B, as shown in Figure 1. We used the institution for first-order predicate logic with equality, \mathcal{FOPEQ} , to specify this mathematical layer.

Fig. 1: The Event-B syntax is split into three layers: superstructure, infrastructure and a mathematical language.

The relationship between the mathematical layer, \mathcal{FOPEQ} , and the other layers, \mathcal{EVT} , is that of a comorphism from \mathcal{FOPEQ} to \mathcal{EVT} . This comorphism allows us to define the satisfaction condition in \mathcal{EVT} by transforming \mathcal{EVT} -models into \mathcal{FOPEQ} -models and evaluating the satisfaction relation in \mathcal{FOPEQ} [3]. It also facilitates the use of \mathcal{FOPEQ} -sentences in \mathcal{EVT} -sentences. In our current work, we seek to exploit the modular, plug and play nature of \mathcal{EVT} and outline a mechanism for replacing this base mathematical layer, \mathcal{FOPEQ} , with the institution for temporal logic, \mathcal{TL} [2].

 $^{^\}star$ This work is partially supported through EPSRC Hubs for Robotics and AI in Hazardous Environments: EP/R026092 (FAIR-SPACE), EP/R026173 (ORCA), and EP/R026084 (RAIN).

There are many variants of temporal logic, for example, linear-time temporal logic [4]. The institution for linear-time temporal logic, \mathcal{LTL} , bears similarities to both \mathcal{EVT} (in its models) and \mathcal{FOPEQ} (in its signatures) [7]. The core component of evaluating the satisfaction relation in \mathcal{EVT} involves transforming \mathcal{EVT} -models into \mathcal{FOPEQ} -models. Therefore, if we replace \mathcal{FOPEQ} with the institution for linear-time temporal logic, then we can either (1) define a comorphism from $\mathcal{L}\mathcal{T}\mathcal{L}$ to $\mathcal{E}\mathcal{V}\mathcal{T}$ that transforms $\mathcal{E}\mathcal{V}\mathcal{T}$ -models into $\mathcal{L}\mathcal{T}\mathcal{L}$ -models, or (2) show how \mathcal{LTL} -models can be reduced to \mathcal{FOPEQ} -models. The former of these approaches is more favourable as it provides a direct link between \mathcal{EVT} and $\mathcal{L}T\mathcal{L}$ rather than using $\mathcal{F}\mathcal{OPEQ}$ as a bridge between them. As $\mathcal{L}T\mathcal{L}$ signatures are the same as those of \mathcal{FOPEQ} , the principal effort in constructing this comorphism is to extract \mathcal{LTL} -models from \mathcal{EVT} -models. Intuitively, this involves extracting sequences of data states from the initialising set, L, and the relations, R, in an \mathcal{EVT} -model. These sequences can then be interpreted as \mathcal{LTL} -models. We have discussed linear-time temporal logic as a small example here but our work examines how the institution for temporal logic in general, \mathcal{TL} , can be combined with \mathcal{EVT} .

By combining \mathcal{EVT} and \mathcal{TL} in this way, we provide a basis for the verification of both safety and liveness properties. Recently, work has been done on incorporating linear-time temporal logic into the Event-B specification language, particularly during refinement steps [5]. However, this is not at the level of institutions and future work includes comparing this work with our institutional approach. Furthermore, our work provides a basis for the development of an institution for the TLA+ state-based specification language that uses temporal logic [6], and for relating the institutions for Event-B and TLA+.

References

- 1. J.-R. Abrial. *Modeling in Event-B: System and Software Engineering*. Cambridge University Press, 2010.
- M. V. Cengarle. The temporal logic institution. Technical report, Bericht 9805, Ludwig-Maximilians-Universität München, Insitut für informatik, 1998.
- 3. M. Farrell, R. Monahan, and J. F. Power. An institution for Event-B. In *International Workshop on Algebraic Development Techniques*, volume 10644 of *Lecture Notes in Computer Science*, pages 104–119, 2016.
- 4. M. Fisher. An Introduction to Practical Formal Methods Using Temporal Logic. Wiley, 2011.
- 5. T. S. Hoang, S. Schneider, H. Treharne, and D. M. Williams. Foundations for using linear temporal logic in Event-B refinement. *Formal Aspects of Computing*, 28(6):909–935, 2016.
- L. Lamport. Specifying systems: the TLA+ language and tools for hardware and software engineers. Addison-Wesley, 2002.
- D. Sanella and A. Tarlecki. Foundations of Algebraic Specification and Formal Software Development. Springer, 2012.