An Approach to Combining the Institutions for Event-B and Temporal Logic*

Marie Farrell1, Rosemary Monahan2, James F. Power2, and Michael Fisher1

1 Department of Computer Science, University of Liverpool, UK
2 Department of Computer Science, Maynooth University, Ireland

The Event-B formal specification language has been used at an industrial scale for proving safety properties of a system’s specification [1]. Event-B is a state-based language that supports the process of formal refinement, it uses a set-theoretic modelling notation and is based on first-order logic. Our previous work on the development of the institution for Event-B, \mathcal{EVT}, involved decomposing the syntax of the Event-B language into three layers [3]. These are the superstructure layer, the infrastructure layer and a base layer where the latter contains the mathematical language used by Event-B, as shown in Figure 1. We used the institution for first-order predicate logic with equality, \mathcal{FOPEQ}, to specify this mathematical layer.

\begin{figure}[h]
\centering
\begin{tabular}{c c c}
\hline
\textbf{Event-B Superstructure} & \textbf{Event-B Infrastructure} & \textbf{Mathematical Language} \\
\hline
\textbf{refines, sees} & \textbf{variables, invariants, variants, events} & \textbf{carrier sets, constants, axioms, extends} \\
\hline
\end{tabular}
\caption{The Event-B syntax is split into three layers: superstructure, infrastructure and a mathematical language.}
\end{figure}

The relationship between the mathematical layer, \mathcal{FOPEQ}, and the other layers, \mathcal{EVT}, is that of a comorphism from \mathcal{FOPEQ} to \mathcal{EVT}. This comorphism allows us to define the satisfaction condition in \mathcal{EVT} by transforming \mathcal{EVT}-models into \mathcal{FOPEQ}-models and evaluating the satisfaction relation in \mathcal{FOPEQ} [3]. It also facilitates the use of \mathcal{FOPEQ}-sentences in \mathcal{EVT}-sentences. In our current work, we seek to exploit the modular, plug and play nature of \mathcal{EVT} and outline a mechanism for replacing this base mathematical layer, \mathcal{FOPEQ}, with the institution for temporal logic, \mathcal{TL} [2].

* This work is partially supported through EPSRC Hubs for Robotics and AI in Hazardous Environments: EP/R026092 (FAIR-SPACE), EP/R026173 (ORCA), and EP/R026084 (RAIN).
There are many variants of temporal logic, for example, linear-time temporal logic \[4\]. The institution for linear-time temporal logic, \(\mathcal{LTL}\), bears similarities to both \(\mathcal{EVT}\) (in its models) and \(\mathcal{FOPEQ}\) (in its signatures) \[7\]. The core component of evaluating the satisfaction relation in \(\mathcal{EVT}\) involves transforming \(\mathcal{EVT}\)-models into \(\mathcal{FOPEQ}\)-models. Therefore, if we replace \(\mathcal{FOPEQ}\) with the institution for linear-time temporal logic, then we can either (1) define a comorphism from \(\mathcal{LTL}\) to \(\mathcal{EVT}\) that transforms \(\mathcal{EVT}\)-models into \(\mathcal{LTL}\)-models, or (2) show how \(\mathcal{LTL}\)-models can be reduced to \(\mathcal{FOPEQ}\)-models. The former of these approaches is more favourable as it provides a direct link between \(\mathcal{EVT}\) and \(\mathcal{LTL}\) rather than using \(\mathcal{FOPEQ}\) as a bridge between them. As \(\mathcal{LTL}\) signatures are the same as those of \(\mathcal{FOPEQ}\), the principal effort in constructing this co-morphism is to extract \(\mathcal{LTL}\)-models from \(\mathcal{EVT}\)-models. Intuitively, this involves extracting sequences of data states from the initialising set, \(L\), and the relations, \(R\), in an \(\mathcal{EVT}\)-model. These sequences can then be interpreted as \(\mathcal{LTL}\)-models.

We have discussed linear-time temporal logic as a small example here but our work examines how the institution for temporal logic in general, \(\mathcal{T}\), can be combined with \(\mathcal{EVT}\). By combining \(\mathcal{EVT}\) and \(\mathcal{T}\) in this way, we provide a basis for the verification of both safety and liveness properties. Recently, work has been done on incorporating linear-time temporal logic into the Event-B specification language, particularly during refinement steps \[5\]. However, this is not at the level of institutions and future work includes comparing this work with our institutional approach. Furthermore, our work provides a basis for the development of an institution for the TLA+ state-based specification language that uses temporal logic \[6\], and for relating the institutions for Event-B and TLA+.

References