
Syntactic Theory Functors

Magne Haveraaen1 and Markus Roggenbach2

1 Bergen Language Design Laboratory
Department of Computer Science, University of Bergen, Norway

https://bldl.ii.uib.no/
2 Department of Computer Science, Swansea University, Wales, UK

http://www.cs.swan.ac.uk/~csmarkus/

Algebraic specification has proven to be a powerful mechanism in software
engineering. Examples include the formulation of concise requirements, analysing
requirements for consistency [6], automated random testing for quality assurance
[1,2], and the verification of software designs [4].

Like in programming, where one can distinguish between programming ‘in
the large’ and ‘programming in the small’ [3], also in algebraic specification
one distinguishes between basic and structured specification [5]. Structuring
specification is considered ’good practice’ for many reasons including separation
of concerns, ease of reuse of specification-text, and improved theorem proving
support. In particular, the algebraic specification language CASL offers a wealth
of structuring mechanisms, including renaming, extension, union, hiding, and
parameterisation. However, developing specifications for practical problems still
hits issues of structuring and reusing specifications. Though immaterial to foun-
dational specification theory, lack of support causes lengthy writing of boilerplate
code or repeated adaptation of specifications from one context to another.

Thus, we suggest to go a step beyond the typical structuring mechanism.
Concretely, we suggest syntactic theory functors (STFs) as a means to ‘pro-
duce’ complex specifications from simpler ones. An STF is a functor F from
specifications to specifications, such that

– the application of F to a given specification Sp, written as F (Sp), can be
flattened out into a basic specification, i.e., one can represent it in the language
used to write Sp and therefore understand the effect of F from the flattened
form; and

– F is compatible with the basic structuring mechanisms.

STFs opens up new ways of reusing existing and structuring new specifications
by enlarging the collection of structuring mechanisms available to a specification
developer. Using STFs will simplify maintenance of specifications compared to the
copy-paste-adapt which otherwise is needed. An STF application can stand as a
shorthand for a specification that would be ‘hard’ and ‘lengthy’ to write directly,
e.g., in CASL. We clearly see the need to use such functors in application areas
such as partial differential equations, volume graphics, compilers/transformations,
etc.

In our paper we provide a selection of useful theory functors, demonstrate
their application in several examples, and study their structural properties.



References

1. Bagge, A.H., David, V., Haveraaen, M.: Testing with axioms in C++ 2011. Journal
of Object Technology 10, 10:1–32 (2011), https://doi.org/10.5381/jot.2011.10.
1.a10

2. Crispim, P., Lopes, A., Vasconcelos, V.T.: Runtime verification for generic classes
with ConGu 2. In: Davies, J., Silva, L., da Silva Simão, A. (eds.) Formal Methods:
Foundations and Applications - 13th Brazilian Symposium on Formal Methods,
SBMF 2010, Natal, Brazil, November 8-11, 2010, Revised Selected Papers. Lecture
Notes in Computer Science, vol. 6527, pp. 33–48. Springer (2010), https://doi.
org/10.1007/978-3-642-19829-8_3

3. DeRemer, F., Kron, H.H.: Programming-in-the-large versus programming-in-the-
small. IEEE Trans. Software Eng. 2(2), 80–86 (1976), https://doi.org/10.1109/
TSE.1976.233534

4. James, P.: SAT-based Model Checking and its applications to Train Control Software.
Master’s thesis, Swansea University (2010)

5. Mosses, P.D. (ed.): CASL Reference Manual: The Complete Documentation of the
Common Algebraic Specification Language, Lecture Notes in Computer Science, vol.
2960. Springer (2004), https://doi.org/10.1007/b96103

6. Roggenbach, M., Schröder, L.: Towards trustworthy specifications I: Consistency
checks. In: Cerioli, M., Reggio, G. (eds.) Recent Trends in Algebraic Specification
Techniques, 15th International Workshop, WADT 2001. Lecture Notes in Computer
Science, vol. 2267. Springer (2001), https://doi.org/10.1007/3-540-45645-7_15


