
Structuring Theories with Implicit Morphisms

Florian Rabe1,2 and Dennis Müller2

1 LRI Paris
2 FAU Erlangen-Nuremberg

Abstract. We introduce implicit morphisms as a concept in formal sy-
stems based on theories and theory morphisms. The idea is that there
may be at most one implicit morphism from a theory S to a theory T ,
and if S-expressions are used in T their semantics is obtained by automa-
tically inserting the implicit morphism. The practical appeal of implicit
morphisms is that they hit the sweet-spot of being extremely simple to
understand and implement while significantly helping with structuring
large collections of theories.

Theory morphisms have proved an essential tool for managing collections of
theories in logics and related formal systems. They can be used to structure
theories and build large theories modularly from small components or to relate
different theories to each other [SW83,AHMS99,FGT92]. Areas in which tools
based on theories and theory morphisms have been developed include specifica-
tion [GWM+93,MML07], rewriting [CELM96], theorem proving [FGT93], and
knowledge representation [RK13].

These systems usually use a logic L for the fine-granular formalization of dom-
ain knowledge, and a diagram D in the category of L-theories and L-morphisms
for the high-level structure of large bodies of knowledge. This diagram is ge-
nerated by all theories/morphisms defined, induced, or referenced in a user’s
development.

Monoid

Group DivGroup

G2DG

DG2G

For example, a user might reference
an existing theory Monoid, define a new
theory Group that extends Monoid, de-
fine a theory DivGroup (providing an al-
ternative formulation of groups based on
the division operation), and then define
two theory morphisms G2DG : Group ↔
DivGroup : DG2G that witness an isomorphism between these theories. This
would result in the diagram on the right. Note that we use the syntactic di-
rection for the arrows, e.g., an arrow m : S → T states that any S-expression
E (e.g., a sort, term, formula, or proof) can be translated to an T -expression
m(E). Crucially, m(−) preserves typing and provability.

The key idea behind implicit morphisms is very simple: We maintain an addi-
tional diagram I, which is commutative subdiagram of D and whose morphisms
we call implicit. The condition of commutativity guarantees that I has at most

one morphism i from theory S to theory T , in which case we write S
∗
↪→ T .



Commutativity makes the following language extension well-defined: if S
∗
↪→ T ,

then any identifier c that is visible to S may also be used in T -expressions; and
if c is used in a T -expression, the semantics of c is i(c) where i is the uniquely
determined implicit morphism i : S → T .

Despite their simplicity, the practical implications of implicit morphism are
huge. For example, in the diagram above, we may choose to label G2DG implicit.
Immediately, every abbreviation or theorem that we have formulated in the the-
ory Group becomes available for use in DivGroup without any syntactic overhead.
We can even label DG2G implicit as well if we prove the isomorphism property to
ensure that I remains commutative, thus capturing the mathematical intuition
that Group and DivGroup are just different formalizations of the same concept.
While these morphisms must be labeled manually, any inclusion morphism like
the one from Monoid to Group is implicit automatically.

In fact, this principle works so well that we have refactored our Mmt system
(our long-standing implementation) in such a way that implicit morphisms are
now more primitive than inclusion morphisms. The semantics of inclusion mor-
phisms is obtained by saying that inclusions are implicit morphisms that map
all identifiers to themselves. Even the fundamental property that a theory may
reference its own identifiers is now just a consequence of the fact that all identity
morphisms are implicit. Therefore, surprisingly, adding implicit morphisms deep
in the Mmt kernel has made its design more elegant.

References

AHMS99. S. Autexier, D. Hutter, H. Mantel, and A. Schairer. Towards an Evolutio-
nary Formal Software-Development Using CASL. In D. Bert, C. Choppy,
and P. Mosses, editors, WADT, volume 1827 of Lecture Notes in Computer
Science, pages 73–88. Springer, 1999.

CELM96. M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In
J. Meseguer, editor, Proceedings of the First International Workshop on
Rewriting Logic, volume 4, pages 65–89, 1996.

FGT92. W. Farmer, J. Guttman, and F. Thayer. Little Theories. In D. Kapur,
editor, Conference on Automated Deduction, pages 467–581, 1992.

FGT93. W. Farmer, J. Guttman, and F. Thayer. IMPS: An Interactive Mathe-
matical Proof System. Journal of Automated Reasoning, 11(2):213–248,
1993.

GWM+93. J. Goguen, Timothy Winkler, J. Meseguer, K. Futatsugi, and J. Jouannaud.
Introducing OBJ. In J. Goguen, D. Coleman, and R. Gallimore, editors,
Applications of Algebraic Specification using OBJ. Cambridge, 1993.

MML07. T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous Tool
Set. In O. Grumberg and M. Huth, editor, Tools and Algorithms for the
Construction and Analysis of Systems 2007, volume 4424 of Lecture Notes
in Computer Science, pages 519–522, 2007.

RK13. F. Rabe and M. Kohlhase. A Scalable Module System. Information and
Computation, 230(1):1–54, 2013.

SW83. D. Sannella and M. Wirsing. A Kernel Language for Algebraic Speci-
fication and Implementation. In M. Karpinski, editor, Fundamentals of
Computation Theory, pages 413–427. Springer, 1983.


