Term Charters

Alexander Knapp¹ and María Victoria Cengarle²

1 Universität Augsburg
knapp@informatik.uni-augsburg.de
2 mv.cengarle@gmail.com

The evaluation $[t]_{(\Sigma,X)}(M,\beta) \in U_{\Sigma}(M)$ of a term $t \in \mathscr{T}_{\Sigma}(X)$ formed over a signature Σ and value variables X generally extends a valuation $\beta: X \to U_{\Sigma}(M)$ of the variables into the underlying values of a structure M such that the following conditions hold for variables x, variable renamings $\xi: X_1 \to X_2$, and signature morphisms $\sigma: \Sigma \to \Sigma'$ (where $-|\sigma|$ denotes the reducts on value variables and structures, and $\xi(t)$ resp. $\sigma(t)$ the extension of ξ resp. σ to terms):

- 1. Variables: $[\![x]\!]_{(\Sigma,X)}(M,\beta) = \beta(x);$ 2. Substitutions: $[\![\xi(t)]\!]_{(\Sigma,X_2)}(M,\beta) = [\![t]\!]_{(\Sigma,X_1)}(M,\beta \circ \xi);$ 3. Evaluations: $([\![\sigma(t)]\!]_{(\Sigma',X')}(M',\beta'))|\sigma = [\![t]\!]_{(\Sigma,X'\mid\sigma)}(M'\mid\sigma,\beta'\mid\sigma).$

Using indexed categories [3], we introduce term charters to give a general account of term evaluation over signatures, value variables, and structures based on an abstract formulation of conditions (1-3). In [1], we have already used a more complex version of term charters to demonstrate how sub-expression languages of the "Object Constraint Language" can be related and combined and how these languages give rise to institutions. Here³, we give a rather simplified account of term charters and we show that they provide a direct presentation of Pawlowski's context institutions [2] which have been introduced to capture the notion of open formulæ over variables in institutions.

The general framework is built over a term charter domain (S, Val, Str, U) consisting of a category S of signatures, indexed categories $Val, Str : \mathbb{S}^{op} \to Cat$ of value variables and structures, and an underlying indexed functor $U: Str \rightarrow Val$. For such a domain, let $\mathscr{C}: Val \stackrel{\sim}{\rightarrow} Val$ be a lax indexed functor constructing terms, renaming terms along value variable renamings, and translating terms along signature morphisms, and $\nu: 1_{Val} \to \mathscr{C}$ a lax indexed natural transformation embedding value variables into terms. Furthermore, for each $\Sigma \in |\mathbb{S}|$, $X \in |Val(\Sigma)|$, and $M \in |Str(\Sigma)|$, let

$$(ext_{\Sigma})_X^M : Val(\Sigma)(X, U_{\Sigma}(M)) \to Val(\Sigma)(\mathscr{C}_{\Sigma}(X), U_{\Sigma}(M))$$

be a function extending a value variable valuation β into a term valuation $(ext_{\Sigma})_{X}^{M}(\beta)$. Then (\mathscr{C}, ν, ext) is a term charter over (S, Val, Str, U) if the following requirements (V), (S), and (E) — directly corresponding to (1-3) — hold:

(V)
$$\nu_{\Sigma}(X); (ext_{\Sigma})_X^M(\beta) = \beta;$$

(S)
$$\mathscr{C}_{\Sigma}(\xi)$$
; $(ext_{\Sigma})_{X_2}^M(\beta) = (ext_{\Sigma})_{X_1}^M(\xi;\beta)$;

³ A paper draft is available at https://www.informatik.uni-augsburg.de/en/ chairs/swt/sse/publications/2018-Term-Charters.html.

(E)
$$\mathscr{C}_{\sigma}(X'); Val(\sigma)((ext_{\Sigma'})_{X'}^{M'}(\beta')) = (ext_{\Sigma})_{Val(\sigma)(X')}^{Str(\sigma)(M')}(Val(\sigma)(\beta'))$$
.

On the one hand, this notion of term charters can be more compactly and succinctly characterised using S-indexed comma categories where it is only required that $ext: 1_{Val} \downarrow U \to \mathscr{C} \downarrow U$ is an indexed functor such that $ext; (\nu \downarrow U) = 1_{1_{Val} \downarrow U}$ (with the indexed functor $\nu \downarrow U: \mathscr{C} \downarrow U \to 1_{Val} \downarrow U$ given by $(\nu \downarrow U)_{\Sigma}(X, \beta^{\natural}, M) = (X, \nu_{\Sigma}(X); \beta^{\natural}, M)$). On the other hand, applying the Grothendieck construction, we obtain the $\mathcal{G}(Val)$ -indexed category $Str^{\mathcal{G}} = \mathcal{G}(1_{Val}) \downarrow U$ with a $\mathcal{G}(Val)$ -indexed functor $ext^{\mathcal{G}}: Str^{\mathcal{G}} \to \mathcal{G}(\mathscr{C})^{\mathrm{op}}; Str^{\mathcal{G}}$ given by $ext^{\mathcal{G}}_{\langle \Sigma, X \rangle}(M, \beta) = (M, (ext_{\Sigma})^{M}_{X}(\beta))$ such that $ext^{\mathcal{G}}: (\mathcal{G}(\nu)^{\mathrm{op}}; Str^{\mathcal{G}}) = 1_{Str^{\mathcal{G}}};$ we write $|ext^{\mathcal{G}}_{\langle \Sigma, X \rangle}(M, \beta)|$ for $(ext_{\Sigma})^{M}_{X}(\beta)$.

The Grothendieck presentation of a term charter $\mathfrak{T}=(\mathscr{C},\nu,ext)$ yields an institution $\mathfrak{I}^{\mathfrak{T}}=(\mathbb{S}^{\mathfrak{T}},Str^{\mathfrak{T}},Sen^{\mathfrak{T}},\models^{\mathfrak{T}})$ if for each $\Sigma\in|\mathbb{S}|$ there is a functor $\mathcal{U}^*_{\Sigma}:Val(\Sigma)\to \mathrm{Set}$ yielding truth value variables with a truth value $*\in\mathcal{U}^*_{\Sigma}(U_{\Sigma}(M))$ for each $M\in|Str(\Sigma)|$ and $Val(\sigma);\mathcal{U}^*_{\Sigma}=\mathcal{U}^*_{\Sigma'}$ for all $\sigma\in\mathbb{S}(\Sigma,\Sigma')$: The category of signatures $\mathbb{S}^{\mathfrak{T}}$ is defined to be $\mathcal{G}(Val)$; the indexed category $Str^{\mathfrak{T}}:(\mathbb{S}^{\mathfrak{T}})^{\mathrm{op}}\to\mathrm{Cat}$ of structures as $Str^{\mathcal{G}}$; the sentence functor $Sen^{\mathfrak{T}}:\mathbb{S}^{\mathfrak{T}}\to\mathrm{Set}$ as $Sen^{\mathfrak{T}}(\langle\Sigma,X\rangle)=\mathcal{U}^*_{\Sigma}(\mathscr{C}_{\Sigma}(X))$ and $Sen^{\mathfrak{T}}(\langle\sigma,\xi\rangle)=\mathcal{U}^*_{\Sigma}(\mathscr{C}_{\sigma}(\xi))$; and the family of satisfaction relations $(\models^{\mathfrak{T}}_{\langle\Sigma,X\rangle}\subseteq|Str^{\mathfrak{T}}(\langle\Sigma,X\rangle)|\times|Sen^{\mathfrak{T}}(\langle\Sigma,X\rangle)|)_{\langle\Sigma,X\rangle\in|\mathbb{S}^{\mathfrak{T}}|}$ by

$$(M,\beta)\models^{\mathfrak{T}}_{\langle \Sigma,X\rangle}\varphi\iff \mathcal{U}^*_{\Sigma}(|\mathit{ext}^{\mathcal{G}}_{\langle \Sigma,X\rangle}(M,\beta)|)(\varphi)=*.$$

Context institutions capture open formulæ over variables by contexts $Ctxt_{\Sigma}$ which directly correspond to $Val(\Sigma)$ for a term charter domain. Context translations $Ctxt_{\sigma}$: $Ctxt_{\Sigma} \to Ctxt_{\Sigma'}$, however, are handled covariantly rather than contravariantly as in term charters. If there is an adjunction $(\eta_{\sigma}, \kappa_{\sigma}) : \sigma^{Val} \dashv Val(\sigma)$ to the value variable reduct, the naturality of η_{σ} yields the *coherence condition* of context institutions. Their substitution and satisfaction conditions

$$\begin{array}{l} (M,\beta) \models_{\varSigma,X_2} \mathit{Frm}_\varSigma(\xi)(\varphi) \iff (M,\xi;\beta) \models_{\varSigma,X_1} \varphi \\ (M',\beta') \models_{\varSigma',\mathit{Ctxt}_\sigma(X)} \mathit{Frm}_{\sigma,X}(\varphi) \iff (\mathit{Str}(\sigma)(M'),\sigma^{\mathit{Val}}_{X,M'}(\beta')) \models_{\varSigma,X} \varphi \end{array}$$

for the formula functor $Frm_{\Sigma}: Ctxt_{\Sigma} \to Set$ and the formula translation $Frm_{\sigma}: Frm_{\Sigma} \to Ctxt_{\sigma}; Frm_{\Sigma'}$ follow from (S) and (E), respectively.

References

- Knapp, A., Cengarle, M.V.: Institutions for OCL-Like Expression Languages. In: De Nicola, R., Hennicker, R. (eds.) Software, Services, and Systems — Essays Dedicated to Martin Wirsing on the Occasion of His Retirement from the Chair of Programming and Software Engineering, Lect. Notes Comp. Sci., vol. 8950, pp. 193–214. Springer (2015)
- Pawlowski, W.: Context Institutions. In: Sel. Papers 11th Ws. Specification of Abstract Data Types & 8th COMPASS Ws. Recent Trends in Data Type Specifications, Lect. Notes Comp. Sci., vol. 1130, pp. 436–457. Springer (1996)
- 3. Wolter, U., Martini, A.: Shedding New Light in the World of Logical Systems. In: Proc. 7th Intl. Conf. Category Theory and Computer Science (CTCS'97). Lect. Notes Comp. Sci., vol. 1290, pp. 159–176. Springer (1997)