
Parameterized strategies specification in Maude⋆

Narciso Martí-Oliet, Isabel Pita, Rubén Rubio, Alberto Verdejo

Universidad Complutense de Madrid, Spain
{narciso,ipandreu,rubenrub,jalberto}@ucm.es

Strategies are ubiquitous in Computer Science. As recipes to tackle search prob-
lems and bound nondeterminism, they appear in algorithms, automatic deduction,
language semantics, artificial intelligence, …. Some of these examples can be specified
and analyzed compositionally, abstracting not only data representation and rules but
also their control. A convenient way of expressing parametric control is parameterized
strategies.

Maude [2] is a declarative high-level language based on rewriting logic [8], allowing
the description, execution and analysis of many models of concurrent and distributed
systems at different levels. In terms of membership equational logic [1], we can specify
sorts, symbols, equations and membership axioms. Then we can add rewrite rules
to represent transitions of a concurrent system, which need neither be deterministic,
nor confluent, nor terminating. Above the previous specification, one level up, we
can control how rules are applied using a strategy language [5, 6], which has been
completed recently.

The basic component of the Maude strategy language is rule application. Rules
are identified by labels, substitutions can be given to instantiate their variables before
application, and additional strategies can be provided to guide the rule’s rewriting
conditions (if any). A family of match operators allows testing whether the term
being rewritten matches a given pattern and satisfies equational conditions. Com-
posed strategies are built through union, concatenation, regular expressions like E∗
and E+, and conditionals. Another operator applies strategies to specific subterms,
and finally, strategy modules allow defining named strategies with recursion. These
strategy modules can take parameters (like the traditional modules in Maude) where
required sorts, symbols, and strategies are declared using a theory. Any module can
be said to comply with a theory by means of a view, which is later used to instantiate
parameterized modules.

The strategy language has already been exploited in the specification of algorithms,
inference systems, and language semantics. Milner’s CCS, ambient calculus, and the
semantics of the parallel functional language Eden are addressed in [7], and in [9]
strategies deal with completion procedures. These examples are likely to be expressed
and generalized using control parameterization with strategies, whose implementation
was not available at that time. Once expressed in this way, the specified systems can be
both executed and tested with different alternative strategies provided as parameters,
or analyzed at different levels with specific tools, like the LTL model checker.

Generic algorithmic schemes and skeletons [4] are other good candidates for being
expressed in those terms. Backtracking is a simple example. A backtracking problem
is defined by a theory which contains a State sort, two equational predicates isOk
⋆ Research partially supported by MINECO Spanish project TRACES (TIN2015-67522-C3-

3-R), and Comunidad de Madrid project N-Greens Software-CM (S2013/ICE-2731).



and isSolution to test whether a given state is valid or solution respectively, and the
strategy expand to generate the next search states. A parameterized strategy module
defines backtracking as another strategy which keeps expanding the valid states until
it finds a solution:

sd solve := (match S s.t. isSolution(S)) ? idle :
(expand ; match S s.t. isOk(S) ; solve)

Then a particular example like the labyrinth escape problem can be expressed instan-
tiating State with 2D positions, isOk to a function that checks that the position is
inside the labyrinth bounds, and isSolution to be true at the exits. expand is then
a union of rules for moving from the current position to its neighbors.

As a extension of Maude 2.7.1 [3], the strategy language implementation has been
recently completed in C++. Now, we are analysing the previous examples and writing
new ones to take full advantage of parameterization, including the λ-calculus and a
simple functional language with several reduction strategies, the simplex algorithm
with different pivoting rules, and ecological models.

References
[1] Adel Bouhoula, Jean-Pierre Jouannaud, and José Meseguer. Specification and

proof in membership equational logic. Theoretical Computer Science, 236(1):35–
132, 2000.

[2] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-
Oliet, José Meseguer, and Carolyn Talcott. All About Maude-A High-Performance
Logical Framework, volume 4350 of Lecture Notes in Computer Science. Springer,
2007.

[3] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-
Oliet, José Meseguer, and Carolyn Talcott. Maude Manual (v 2.7.1). July 2016.

[4] J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly, D. W. N. Sharp, Q. Wu,
and R. L. While. Parallel programming using skeleton functions. In Arndt Bode,
Mike Reeve, and Gottfried Wolf, editors, PARLE ’93 Parallel Architectures and
Languages Europe, pages 146–160. Springer, 1993.

[5] Steven Eker, Narciso Martí-Oliet, José Meseguer, and Alberto Verdejo. Deduc-
tion, strategies, and rewriting. Electron. Notes Theor. Comput. Sci., 174(11):3–
25, July 2007.

[6] Narciso Martí-Oliet, José Meseguer, and Alberto Verdejo. Towards a strategy
language for maude. Electron. Notes Theor. Comput. Sci., 117:417–441, 2005.
Proceedings of the Fifth International Workshop on Rewriting Logic and Its
Applications (WRLA 2004).

[7] Narciso Martí-Oliet, Miguel Palomino, and Alberto Verdejo. Strategies and sim-
ulations in a semantic framework. Journal of Algorithms, 62(3):95–116, 2007.

[8] José Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73–155, 1992.

[9] Alberto Verdejo and Narciso Martí-Oliet. Basic completion strategies as another
application of the maude strategy language. In Santiago Escobar, editor, Pro-
ceedings 10th International Workshop on Reduction Strategies in Rewriting and
Programming, WRS 2011, pages 17–36, 2011.

http://dx.doi.org/10.1016/S0304-3975(99)00206-6
http://dx.doi.org/10.1016/S0304-3975(99)00206-6
http://dx.doi.org/10.1007/978-3-540-71999-1
http://dx.doi.org/10.1007/978-3-540-71999-1
http://maude.cs.uiuc.edu/
http://dx.doi.org/10.1007/3-540-56891-3_12
http://dx.doi.org/10.1016/j.entcs.2006.03.017
http://dx.doi.org/10.1016/j.entcs.2006.03.017
http://dx.doi.org/10.1016/j.entcs.2004.06.020
http://dx.doi.org/10.1016/j.entcs.2004.06.020
http://dx.doi.org/10.1016/j.jalgor.2007.04.002
http://dx.doi.org/10.1016/j.jalgor.2007.04.002
http://dx.doi.org/10.1016/0304-3975(92)90182-F
http://dx.doi.org/10.4204/EPTCS.82.2
http://dx.doi.org/10.4204/EPTCS.82.2

	Parameterized strategies specification in Maude

