Towards Establishing Consistency between Graph
Transformation Rules and Atomic Graph
Constraints Using Multi-Amalgamation

Jens Kosiol', Lars Fritsche?, Nebras Nassar!,
Andy Schiirr?, and Gabriele Taentzer!

L Philipps-Universitit Marburg
{kosiolje,nassarn,taentzer}@mathematik.uni-marburg.de
? TU Darmstadt
{lars.fritsche,andy.schuerr}@Qes.tu-darmstadt.de

In this paper, we report about work in progress in which we develop a new kind of
correct-by-construction transformations in the setting of algebraic graph trans-
formation. The theory of algebraic graph transformation [1] has proved to be a
suitable formal framework to reason about model transformations. Meta-models
are formalized as type graphs and instances as typed graphs. The application of
a transformation is given by two pushouts. Nested conditions and constraints [3]
allow to express (first-order) properties of typed graphs or morphisms which
are not expressible by typing alone. In many application scenarios, like instance
generation and editing or refactoring of instances, it is desirable that transforma-
tions preserve consistency w.r.t. constraints. Given a constraint ¢ and a rule r,
Habel and Pennemann [3] developed the construction of so-called c-guaranteeing
and c-preserving rules. Both constructions equip the rule r with an application
condition that ensures that the updated rule is only applicable in such a way
that the constraint c is fulfilled after application. The application condition of
the c-preserving rule is logically weaker since it assumes the constraint c to hold
before application of the rule. The basic idea behind their approach is to com-
pute all essentially different ways in which the rule » might be applied such that
the constraint ¢ holds after application and requiring one of them to hold. But
a rule may be rendered inapplicable by this construction: If there is no way to
apply a rule r such that the constraint c is fulfilled after application, it gets
equipped with the application condition false, meaning that the rule is not ap-
plicable any longer. Depending on the application scenario, this may constitute
an undesirable restriction of the language defined by the given set of rules.

To supplement the just described approach, we developed an alternative con-
struction for special kinds of rules and constraints. Our idea is to complement
the action of a rule r in such a way that a given constraint ¢ holds after ap-
plication of the rule instead of calculating an application condition. Since we
intend to not alter but complement the action of a rule, we restrict ourselves to
the cases of monotonic rules, i.e., rules which only create structure, and atomic
constraints as defined in [1]. Some instance G satisfies such an atomic constraint
¢ — which may be compactly notated as V(P,3C) where P is a subobject of C' —
if for all subobjects of G that are isomorphic to P there exists a subobject iso-
morphic to C' which includes the image of P. The crucial idea of our approach is



to calculate all possible ways in which the application of a monotonic rule r may
lead to a new match for the precondition P of a constraint V(P,3C'). These are
the different ways in which application of the rule can introduce a new violation
of the constraint. They can significantly differ from each other and thus require
diverging actions to resolve the would-be introduced violation of the constraint.
Hence, for each such situation we derive a rule that includes the original rule r as
subrule but additionally creates structure that complements the new match for
P to a new match for C. All these rules are collected into a so-called interaction
scheme [2]. Applying an interaction scheme means to apply their common sub-
rule — here, the original rule r — once and every other rule from the interaction
scheme as often as possible but with fixed partial match given by the match
of the subrule. The arising rule is called multi-amalgamated. In this way, every
image for P that gets newly created by an application of the rule r is comple-
mented to an image of C' by application of one of the rules of the interaction
scheme. Formalizing two variants of this construction in the setting of adhesive
categories and proving that they guarantee or, respectively, preserve a constraint
c under certain circumstances is the main contribution of this paper.

Afterwards we discuss some possibilities to refine our technique, namely in-
clusion of application conditions, support of more general kinds of rules, and
(limited) support for situations in which recursion may occur, i.e., in situations
where complementing an image for P to one of C' in an instance G may lead to
an additional image of P. To examine the practicability of our approach, we plan
to implement and use it to automatically derive more complex edit-operations
out of given simple ones and to automatically design multi-amalgamated triple
graph rules [4] out of simple ones (which are always monotonic).

Acknowledgments This work was partially funded by the German Research
Foundation (DFQG), projects “Triple Graph Grammars (TGG) 2.0” and “Gener-
ating Development Environments for Modeling Languages”.

References

[1] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fun-
damentals of algebraic graph transformation. Monographs in Theoretical
Computer Science. Berlin, Heidelberg, and New York: Springer, 2006.

[2] Ulrike Golas, Annegret Habel, and Hartmut Ehrig. “Multi-amalgamation
of rules with application conditions in M-adhesive categories”. In: Math.
Struct. in Comp. Science 24 (4 2014).

[3] Annegret Habel and Karl-Heinz Pennemann. “Correctness of high-level trans-
formation systems relative to nested conditions”. In: Math. Struct. in Comp.
Science 19 (2 2009), pp. 245-296.

[4] Erhan Leblebici, Anthony Anjorin, Andy Schiirr, and Gabriele Taentzer.
“Multi-amalgamated Triple Graph Grammars”. In: Proc. of ICGT ’15. Ed.
by Francesco Parisi-Presicce and Bernhard Westfechtel. Cham: Springer,
2015, pp. 87-103.



