
A Flexible Categorial Formalisation of Term
Graphs as Directed Hypergraphs

Wolfram Kahl and Yuhang Zhao

McMaster University, Hamilton, Ontario, Canada, {kahl|zhaoy36}@mcmaster.ca

Term graphs underlie important implementation techniques for functional
programming languages, and are also used as internal data structures in many
other symbolic computation setting, including in code generation back-ends for
example in compilers. Nowadays, term graphs are typically considered as jungles,
a kind of directed hypergraphs introduced for this purpose by Hoffmann and
Plump (1991).

As our formalisation setting, we use the dependently-typed programming
language and proof assistant Agda (Norell, 2007); Agda permits us to write
definitions essentially in the way they are written for mathematical purposes,
and prove properties about them, but all function definitions are also directly
executable, making this a good environment for correct-by-construction tool
development.

A data type for directed hypergraphs with m input (“variable”) nodes and
n output (“root”) nodes can be defined in the following natural-but-naïve way
assuming an arity-indexed label type Label0 ∶ N→ Set to be given:1

record DHG0 (m n ∶ N) ∶ Set1 where
field Inner ∶ Set -- set of inner (non-input) nodes
Node = Fin m ⊎ Inner -- set containing graph input and inner nodes
field output ∶ Vec Node n -- vector of graph output nodes

Edge ∶ Set -- set of edges
eOut ∶ Edge→ Inner -- edge output node
eArity ∶ Edge→ N -- edge arity
eLabel ∶ (e ∶ Edge) → Label0 (eArity e) -- edge label
eIn ∶ (e ∶ Edge) → Vec Node (eArity e) -- edge input nodes

Similar definitions with some discussion of the design space have been shown in
(Kahl, 2011); there, we also use Setoid instead of Set, to be able to work with
user-defined equalities.

This definition is easily extended to one for jungles, by specifying that eOut
is an isomorphism.

However, this definition (no matter whether based on Set or Setoid) is not
easily adapted to, for example, finite node and edge sets — one could do this
via another extension that adds finiteness proofs.

Using this approach to restrict DHG0s to those having node and edge sets
of shape “Fin n” would involve a type-level propositional equality that would be
extremely awkward to use.

1 For n ∶ N, the type Fin n contains exactly the natural numbers less than n.



2 Wolfram Kahl and Yuhang Zhao

For all such restrictions, a much more natural approach is to replace Set in
the definition of DHG0 with a parameter. As a first step, we propose to replace
the category of Sets and Agda functions with a parameter category — and turn
also the input and output arities into objects of the parameter category. When
doing that, however, we still cannot easily switch to a concrete parameter that
has exactly the types Fin n as objects, because one of the field eArity ∶ Edge→ N
which has a result type that cannot be replaced by any Fin n.2

We therefore refine the parameter setting from a category to a category
embedded in a semigroupoid via a full and faithful functor preserving finite col-
imits — the category will be understood as a category of finite sets, and objects
like N are accommodated in the semigroupoid. We can restrict the morphisms
of the semigroupoid to those functions starting from finite sets, which makes
them implementable via finite data structures such as arrays or balanced trees.
(A further refinement using dependent objects allows us to deal also with the
dependently-typed fields eLabel and eIn.)

With the “standard” parameter setting of finite sets embedded in the category
Set, the resulting categories of directed hypergraphs (respectively jungles) are
equivalent to the mathematically-presented finite directed hypergraphs. How-
ever, instantiation with data-structure implementation categories becomes easy,
and makes all functions defined in the parameterised setting useful as tool com-
ponents.

Corradini and Gadducci (1999) introduced gs-monoidal categories as cate-
gorial theory of term graphs (jungles); we have used the parameterised setting
to prove in Agda that directed hypergraphs and jungles form gs-monoidal cate-
gories, and implemented, still in that categorial setting, the decomposition func-
tion and its correctness proof underlying the theorem of Corradini and Gadducci
(1999) that term graphs form the free gs-monoidal category. We are working on
using this as foundation for a verified implementation of term graph rewriting.

References

A. Corradini, F. Gadducci. An algebraic presentation of term graphs, via gs-
monoidal categories. Applied Categorical Structures, 7(4):299–331, 1999. ISSN
1572-9095. doi: 10.1023/A:1008647417502.

B. Hoffmann, D. Plump. Implementing term rewriting by jungle evaluation. In-
formatique théorique et applications/Theoretical Informatics and Applications,
25(5):445–472, 1991.

W. Kahl. Dependently-typed formalisation of typed term graphs. In R. Echahed
(ed.), Proc. of 6th International Workshop on Computing with Terms and
Graphs, TERMGRAPH 2011, EPTCS, vol. 48, pp. 38–53, 2011. doi: 10.4204/
EPTCS.48.6. http://eptcs.org/content.cgi?TERMGRAPH2011.

2 One could decide that Fin 264 will “always be enough”, but for the sake of generality,
let us reject this argument.

https://doi.org/10.1023/A:1008647417502
https://doi.org/10.4204/EPTCS.48.6
https://doi.org/10.4204/EPTCS.48.6
http://eptcs.org/content.cgi?TERMGRAPH2011


Title Suppressed Due to Excessive Length 3

U. Norell. Towards a Practical Programming Language Based on Dependent
Type Theory. PhD thesis, Dept. Comp. Sci. and Eng., Chalmers Univ. of
Technology, 2007. See also http://wiki.portal.chalmers.se/agda/pmwiki.php.

http://wiki.portal.chalmers.se/agda/pmwiki.php

	A Flexible Categorial Formalisation of Term Graphs as Directed Hypergraphs

